八年级关于全等三角形的判定知识点
导语:石可破也,而不可夺坚;丹可磨也,而不可夺赤。下面是小编为大家整理的,数学知识。想要知更多的资讯,请多留意CNFLA学习网!
一、本节学习指导
本节较难,考试题目千变万化,更是容易和其他几何联合起来出题,同学们要牢牢的掌握好。有什么困难可以发在加速度学习网上,让我们一起讨论。本节有配套免费学习视频。
二、知识要点
1、两个三角形全等的条件【重点】
(1)判定1——边边边公理
三边对应相等的两个三角形全等,简写成“边边边”或“SSS”。
“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架)。
注意:边边边是三条边都相等,并且在书写时边与边要对应书写。在已知两边相等的情况下优先考虑。
(2)判定2——边角边公理
两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。
注意:边角边中,角是指两对应边的夹角,如上图中,同样在书写时对应边角对准。比如上图中正确的写法是:△ABC≌△A'B'C'
(3)判定3——角边角公理
两角和它们的夹边对应相等的两个三角形全等。简写为“角边角”或“ASA”。
注意:角边角中,边是两个角中间时,才能描述为角边角,否则就是下面的角角边。
(4)判定4——角角边推论
两角和其中一角的对边对应相等的两个三角形全等。简称“角角边”或“AAS”。
(5)直角三角形全等的判定——斜边直角边公理
斜边和一条直角边对应相等的两个直角三角形全等。简写成“斜边直角边”或“HL”。 判定直角三角形全等的`方法:
①一般三角形全等的判定方法都适用;
②斜边-直角边公理
2、证明三角形全等一般有以下步骤:
(1)读题:明确题中的已知和求证;
(2)要观察待证的线段或角,在哪两个可能全等的三角形中
(3)、分析要证两个三角形全等,已有什么条件,还缺什么条件。有公共边的,公共边一定是对应边, 有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角
(4)、先证明缺少的条件
(5)、再证明两个三角形全等
(要符合书写步骤:先写在某两个三角形中、然后写条件,再写结论)